The Influence of Phosphonic Acid Protonation State on the Efficiency of Bis(diimine)copper(I)-based Dye Sensitized Solar Cells

Alexander J. Stephens, Catherine E. Housecroft, Edwin C. Constable

University of Basel, Department of Inorganic Chemistry, CH-4506 Basel, Switzerland

E-mail: <u>alexander.stephens@unibas.ch</u>

The photoactive component of a Dye Sensitized Solar Cell (DSSC) consists of a dye molecule bound (either electrostatically or covalently) to a mesoporous TiO₂ surface through functional groups such as phosphonic acids.^[1] Here, we investigate how the protonation state of such phosphonic acids affects their ability to anchor to TiO₂ substrates, and how the operational parameters of the resultant DSSCs are influenced in turn.

Stepwise titration of bases into a solution of LH_4 alters the ligands protonation state and the nature of its associated cations to give $[LH_n][X]_{n-4}$ (Fig. 1). The formation of Cu^I dye molecules is achieved by sequentially exposing TiO₂ electrodes to $[LH_n][X]_{n-4}$, followed by the homoleptic Cu^I complex of the ancillary ligand. Our results demonstrate that the addition of a small amount of base to LH_4 (~1 eq) can afford up to a 30% increase in DSSC efficiency. These results are rationalized through consideration of proton / cation transfer from the ligand to the surface, deprotonation of surface hydroxides, and changes in the photochemical and electrochemical properties of ligand LH_4 upon deprotonation.

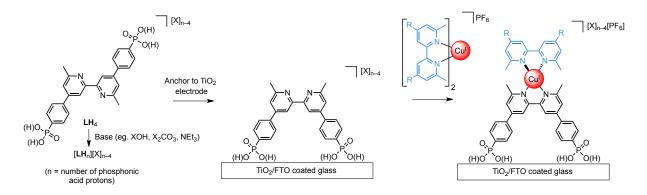


Figure 1. The sequential formation of a bis(diimine)copper(I) dye on a TiO₂ electrode using phosphonic acids in different protonation states.

References:

[1] C. E. Housecroft, E. C. Constable, *Chem. Soc. Rev.*, **2015**, 44, 8386.