Efficient approach for simultaneous CO and H_2 production via photoreduction of CO₂ with water over copper nanoparticles loaded TiO₂

Nikita Singhal ^{1,2}, and Umesh Kumar ^{1,2}

1 Chemical Science Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India

2 AcSIR-Academy of Scientific & Innovative Research New Delhi, India

E-mail: singhalnikita17@gmail.com

Introduction: The CO₂ transformation into fuel by using solar light irradiation is an effective method as no extra energy required with no negative influence on the environment. Different types of photocatalysts have been already introduced by many researchers for CO₂ reduction.^[1] Among all reported material TiO₂ is considered as a promising catalyst due to its high abundance, high stability and low cost.^[2] However fast recombination, and UV irradiation requirement limits its efficiency. Different strategies were addressed to improve photocatalytic activity of TiO₂.^[3] Due to the low cost and availability, copper would be a better choice to modify TiO₂.

Herein, we describe the successful synthesis of copper/TiO₂ nanoparticles in which ex-situ synthesized Cu NPs were dispersed on the surface of TiO₂. And the synthesized copper/TiO₂ nanoparticles were well characterized and capitalized for the CO₂ photo reduction with water vapour to yield CO as major product under UV radiation.

Synthesis: Cu Nps were prepared by chemical reduction route and loaded over lab synthesized TiO_2 nanoparticles followed by calcination or hydrogenation to obtain a series of Cu/TiO₂. Different characterization were followed (XRD, UV, and TEM) to study physiochemical properties.

Result and Discussion: XRD pattern reveals [that prepared catalysts contain only anatase phase of TiO₂. (JCPDS 21-1272) A small peak present at ca. 43.5° corresponding to (111) hkl plane of copper metal in 2% Cu-Red/TiO₂. (JCPDS 85-1326) While the UV spectra shows that prepared TiO₂ absorbs light in the range of 380 – 400 nm corresponding to band-gap of ca. 3.2 - 3.1 eV and loading of Cu increases the absorption. The feed stock Cu-NPs are close to spherical in shape and their size lies in the range of 2.5 - 10 nm. The finger spacing of 0.35 nm and 0.207 nm were indexed to the (101) lattice plane of anatase TiO₂ and Cu (111) planes. In XP spectra of 2% Cu-Oxi/TiO₂ has a peak at 934.4 eV belonging to 2p3/2 of Cu²⁺ in CuO and a broad satellite peak of weak intensity at 943.8 eV, 2p1/2 peak characteristic of the presence of Cu²⁺ species.

The prepared photocatalyst were tested for CO₂ photoreduction under UV C irradiation in a continuous gas phase reactor. The 1% Cu-Red/TiO₂ is considered as best catalyst in terms of CO and H₂ formation with rate 334 μ mol g⁻¹h⁻¹ and 452 μ mol g⁻¹h⁻¹ respectively.

Figure 1. (i) XRD of Cu/TiO₂ (ii) Electronic spectra of (a) TiO₂ and Cu-NPs loaded TiO₂; (b) Cu-NPs

Figure 2. Product formation during photocatalytic reduction of CO_2 over 3 h of irradiation: (a) CO production with different flow rate over 2% Cu-Oxi/TiO₂; (b) CO production with different light sources over 2% Cu-Oxi/TiO₂; (c) CO production over different photocatalysts; (d) H₂ production over different photocatalysts under UV-C light.

Funding: CSIR (Grant Serial 1121110360, Ref-18-12/2011(ii)EU-V).

Acknowledgement: We thank Director IIP, and analytical Science division, CSIR-IIP. N.S. is thankful to CSIR for funding.

References:

- [1] S. Das, W. M. A. W. Daud, RSC Adv., 2014, 4, 20856
- [2] B. Sarkar, N. Singhal, R. Goyal, A. Bordoloi, L.N. S. Konathala, U. Kumar, R. Bal, *Catal. Commun.*, **2016**, 74, 43
- [3] M. Hamadanian, A. Reisi-Vanani, A. Majedi, Mater. Chem. Phys., 2009, 116, 376