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Rhenium(I) diimine tricarbonyl complexes of type fac-[ReI(bpy)(CO)3L]n+ (bpy = 
2,2′-bipyridine, L = various monodentate ligands, n = 0, 1) have been extensively studied 
since they show emissions at ambient temperature even in solution[1] and can play a role as a 
photocatalyst for CO2 reduction.[2,3] The electronic states of these complexes are characterised 
by 5d orbitals of the rhenium atom (d6 metal ion) and low-lying π and π* orbitals localised on 
the diimine ligand. Triplet metal-to-ligand charge-transfer (3MLCT) states have been mostly 
studied over the last three decades, since their emissions or photocatalytic activities are 
related to the lowest 3MLCT state.[4] The triplet metal-centred (3MC) states also play an 
important role in the photochemical ligand substitution (PLS; Scheme 1),[5] which is an useful 
reaction to build supramolecules such as photoactive molecular-scale wires.[6] 

 
Scheme 1. Photochemical ligand substitution (PLS) reaction. 

The complex with a phosphorus ligand, fac-[ReI(bpy)(CO)3PR3]+, is more reactive in PLS 
than that without a phosphorus ligand, e.g. fac-[ReI(bpy)(CO)3Cl]. The origin of difference in 
PLS reactivity has recently been investigated by ab initio calculations.[7] In both cases, the 
ultrafast decay process to the lowest triplet (T1) state after photo-excitation was very similar, 
and the character of the T1 state changed from 3MLCT to 3MC according as the Re-CO 
distance increased (Scheme 2). Dissociation barriers of the Re-CO were found in the 3MC 
state along the reaction coordinate even in fac-[ReI(bpy)(CO)3P(OMe)3]+ case. Equatorial CO 
ligands had a much higher energy barrier to dissociate than that of the axial CO, so that the 
axial CO ligand selectively dissociated. The single component artificial force induced reaction 
(SC-AFIR) search[8] revealed that the minimum-energy seams of crossing between the T1 and 
S0 (ground) states (S0/T1-MESXs) were located before the barrier. The MESX is the minimum 
energy point of the crossing seam of two potential energy surfaces (different spin states), and 
the non-radiative decay of the intersystem crossing (ISC) could efficiently occur at the MESX. 
While the less PLS reactive complex fac-[ReI(bpy)(CO)3Cl] had lower energy S0/T1-MESXs 
than the dissociation barrier (Scheme 2a), no S0/T1-MESXs below the barrier were found in 
fac-[ReI(bpy)(CO)3P(OMe)3]+ (Scheme 2b). Therefore fac-[ReI(bpy)(CO)3Cl] can decay into 
the S0 state and it shows no PLS reactions. 
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Scheme 2. Mechanisms of PLS reaction of (a) fac-[ReI(bpy)(CO)3Cl] and (b) fac-[ReI(bpy)(CO)3P(OMe)3]+. 

Substituent effects on the PLS reactivity of fac-[ReI(X2bpy)(CO)3P(OMe)3]+ (X2bpy = 
4,4′-X2-2,2′-bipyridine, X = Me, OMe, CF3) have also been studied.[9] An electron- 
withdrawing group stabilised the 3MLCT. On the other hand, an electron-donating group 
raised the energy of the 3MLCT. But the substitution on bpy did not affect the 3MC. Therefore, 
it was suggested that the PLS reactivity decreases as OMe > Me > H > CF3. This series of 
results confirms our proposed mechanism.  
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