D_{CT} : A useful tool for the characterization of charge transfer excited states from small organic molecules to large metal complexes.

Federica Maschietto, Marco Campetella, Ilaria Ciofini

Équipe CTM, PSL Research University Paris, IRCP UMR8247, École Nationale Supérieure Chimie Paris

Email: federica.maschietto@chimie-paristech.fr

Through-space charge transfer (CT) excitations play a key role in many technological applications from solar-to-electricity conversion devices to artificial and natural photosynthetic architectures. Defining the extension associated to an electronic transition is of particular relevance, especially in the case of charge-transfer (CT) excitations. Here we present a TD-DFT study, intended to provide a simple understanding and characterization of excited-state CT processes. We rely on the D_{CT} index, which recovers the effective charge/hole distance associated to a given transition, based on the computed ground state and excited state relaxed or unrelaxed densities. We first assess the reliability of the $D_{CT}^{[1,2]}$, by simulating a large set of Donor-Acceptor (D/A) push-pull molecules derived from an $\alpha \omega$ -nitroaminophenilene: For a given D/A pair, we study the evolution of the D_{CT} as a function of the length of the central spacer. In particular the "relaxed" ($^{R}D_{CT}$), unlike its "unrelaxed" (^UD_{CT}) counterpart is a measure of the redistribution of the electronic charge due to the excitation^[3]. Combining the use of ${}^{R}D_{CT}$ and ${}^{U}D_{CT}$ we inspect the character (CT or not) and the spatial extent of a given transition^[4]. Secondly we present a computational protocol, which allows to follow excited-state electron transfer in large metal complexes, based on the minimization of the D_{CT} index.

Funding: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 648558, STRIGES CoG grant).

References:

- [1] T.Le Bahers, C. Adamo and I. Ciofini, *J. Chem. Theory Comput.* **2011**, 7, 2498–2506.
- [2] I. Ciofini, T. LeBahers, C.Adamo, F. Odobel, D. Jacquemin, J. Phys. Chem. C 2012, 116, 11946–11955.
- [3] F. Furche, D.Rappoport, *Theor .Comp. Chem.*, 2005, 16, 93–128.
- [4] F. Maschietto, M.Campetella, I.Ciofini, C. Adamo: In preparation.