Diabatic Strategies for Molecular and Macromolecular Photodynamics

<u>B. Lasorne</u>¹, A. Perveaux^{1,2}, D. Mendive-Tapia^{1,3}, E. K.-L. Ho¹, M. Lorphelin², M.-L. Doublet¹, T. Etienne¹, D. Lauvergnat², M. A. Robb³, M. J. Bearpark³, G. A. Worth⁴

¹Institut Charles Gerhardt, CNRS – Université de Montpellier, Montpellier, France ²Laboratoire de Chimie Physique, CNRS – Université Paris-Sud, Orsay, France ³Department of Chemistry, Imperial College London, London, UK ⁴Department of Chemistry, University College London, London, UK

E-mail: <u>benjamin.lasorne@umontpellier.fr</u>

Quantum dynamics simulations applied to ultrafast photoinduced processes often require an adiabatic-to-diabatic transformation (diabatisation) of the data produced from quantum chemistry calculations. The vibronic coupling Hamiltonian (VCH) quasidiabatic model developed by Köppel and coworkers is a fruitful strategy that has been used for calculating photoabsorption and photoelectron spectra with the multiconfiguration time-dependent Hartree (MCTDH) method. We present here an example of strategy whereby a generalised VCH approach was applied to the description of the excited-state intramolecular proton-transfer (ESIPT) process in 3-hydroxychromone simulated with the multilayer formulation of MCTDH termed ML-MCTDH.^[1]

Alternatively, the direct dynamics variational multiconfiguration Gaussian (DD-vMCG) wavepacket method frees simulations from this preliminary step by calculating the potential energy and its derivatives on the fly. Various diabatisation procedures for generating quasidiabatic Hamiltonians on-the-fly have been implemented in the current code and are being tested at the moment. This is illustrated with simulations of internal conversion in fulvene.^[2,3]

Finally, we will expose some recent methodological developments aimed at describing excitation-energy transfer within conjugated macromolecules such as the building blocks of poly(phenylene ethynylene) dendrimers.^[4]

References:

- [1] A. Perveaux, M. Lorphelin, B. Lasorne, and D. Lauvergnat, *Phys. Chem. Chem. Phys.*, **2017**, 19, 6579
- [2] D. Mendive-Tapia, B. Lasorne, G. A. Worth, M. A. Robb, and M. J. Bearpark, *J. Chem. Phys.*, **2012**, 137, 22A548
- [3] G. W. Richings, I. Polyak, K. E. Spinlove, G. A. Worth, I. Burghardt, and B. Lasorne, *Int. Rev. Phys. Chem.*, **2015**, 34, 269
- [4] E. K.-L. Ho, T. Etienne, and B. Lasorne, J. Chem. Phys., 2017, submitted