Synthesis of chlorophyll derivatives directly conjugated with an aryl group at the C3 position and their photophysical properties

Naoya Funayama, Hitoshi Tamiaki

Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan

E-mail: sc0044vx@ed.ritsumei.ac.jp

Photosynthetically active chlorophyll-a is one of the naturally occurring porphyrinoids, which has a π -conjugated skeleton, called a chlorin. Its peripheral substituents affect the visible absorption spectra in a solution. Especially, the C3-substituents regulate the redmost Qy absorption bands^[1]. The rotation around the C3-C3¹ single bond also controls the Qy maxima^[2].

Two regioisomeric chlorophyll derivatives **1** and **2** directly conjugated with an aryl group at the C3 position (Fig. 1) were synthesized by chemical modification of chlorophyll-a extracted from a cyanobacterium, *Spirulina* species. The isomeric aryl-chlorins gave different Qy maxima in CH₂Cl₂ (Fig. 2). Aryl-chlorin **2** bearing a substituent at the *ortho*-position of the 3-phenyl group showed a bule-shifted Qy band, compared with that of **1**: from 667 to 664 nm in CH₂Cl₂. This blue shift was ascribable to the steric factor of the *ortho*-substituent, inducing π -disconnection of the 3-aryl group with a chlorins moiety through the rotation of the C3-C3¹ bond from the coplanar conformation.

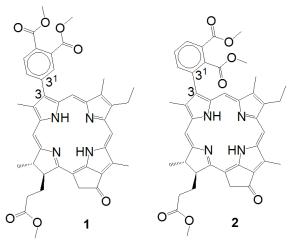


Figure 1. Synthetic chlorophyll derivatives directly conjugated with an aryl group

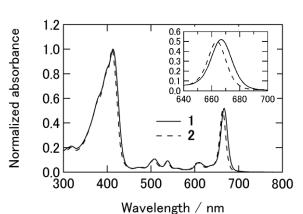


Figure 2. UV-Vis absorption spectra of 1 (solid) and 2 (broken) in CH₂Cl₂

References:

- [1] H. Tamiaki, M. Kouraba, *Tetrahedron*, **1997**, 53, 10677-10688
- [2] H. Tamiaki, K. Mizutani, S. Sasaki, T. Tatebe, *Tetrahedron*, **2016**, 72, 6626-6633